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Process Optimization

• Typical Industrial Problems
• Mathematical Programming Software
• Mathematical Basis for Optimization
• Lagrange Multipliers and the Simplex Algorithm
• Generalized Reduced Gradient Algorithm
• On-Line Optimization
• Mixed Integer Programming and the Branch 

and Bound Algorithm
• Chemical Production Complex Optimization



New Results
• Using one computer language to write and 

run a program in another language

• Cumulative probability distribution instead 
of an optimal point using Monte Carlo 
simulation for a multi-criteria, mixed integer 
nonlinear programming problem

• Global optimization



Design vs. Operations

• Optimal Design
−Uses flowsheet simulators and SQP
– Heuristics for a design, a superstructure, an 

optimal design
• Optimal Operations

– On-line optimization
– Plant optimal scheduling
– Corporate supply chain optimization



Plant Problem Size

Contact Alkylation Ethylene
3,200 TPD 15,000 BPD 200 million lb/yr

Units 14 76 ~200

Streams 35 110 ~4,000

Constraints

Equality 761 1,579 ~400,000

Inequality 28 50 ~10,000

Variables

Measured 43 125 ~300

Unmeasured  732 1,509 ~10,000

Parameters 11 64 ~100



Optimization Programming Languages

• GAMS - General Algebraic Modeling System
• LINDO - Widely used in business applications 
• AMPL - A Mathematical Programming 

Language 
• Others: MPL, ILOG

optimization program is written in the form of an
optimization problem 

optimize:   y(x) economic model
subject to: fi(x) = 0 constraints



Software with Optimization Capabilities

• Excel – Solver
• MATLAB
• MathCAD
• Mathematica
• Maple
• Others



Mathematical Programming

• Using Excel – Solver
• Using GAMS
• Mathematical Basis for Optimization
• Important Algorithms

– Simplex Method and Lagrange Multipliers
– Generalized Reduced Gradient Algorithm
– Branch and Bound Algorithm



Simple Chemical Process

minimize:  C = 1,000P +4*10^9/P*R +  2.5*10^5R
subject to:  P*R = 9000

P – reactor pressure

R – recycle ratio



Excel Solver Example

C =1000*D5+4*10^9/(D5*D4)+2.5*10^5*D4
P*R =D5*D4
P 1
R 1

Example 2-6 p. 30 OES   A Nonlinear Problem
C 3.44E+06 minimize:  C = 1,000P +4*10^9/P*R +  2.5*10^5R
P*R 9000.0 subject to:  P*R = 9000
P 6.0 Solution
R 1500.0 C = 3.44X10^6

P = 1500 psi
R = 6

Showing the equations in the Excel cells with initial values for P and R

Solver optimal solution



Excel Solver Example



Excel Solver Example
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Excel Solver ExampleUse Solver with these 
values of P and R 



Excel Solver Example

optimum Click to highlight to 
generate reports



Excel Solver Example

Information from Solver Help is of limited value



Excel Solver Answer Report management report 
format

constraint 
status

slack 
variable

values at the 
optimum



Excel Sensitivity Report

Solver uses the 
generalized reduced 
gradient optimization 
algorithm

Lagrange multipliers used 
for sensitivity analysis

Shadow prices ($ per unit)



Excel Solver Limits Report

Sensitivity Analysis provides 
limits on variables for the optimal 

solution to remain optimal



GAMS



GAMS S O L V E      S U M M A R Y

MODEL   Recycle             OBJECTIVE  Z
TYPE    NLP                 DIRECTION  MINIMIZE
SOLVER  CONOPT              FROM LINE  18

**** SOLVER STATUS     1 NORMAL COMPLETION         
**** MODEL STATUS      2 LOCALLY OPTIMAL           
**** OBJECTIVE VALUE          3444444.4444

RESOURCE USAGE, LIMIT          0.016      1000.000
ITERATION COUNT, LIMIT        14         10000
EVALUATION ERRORS              0             0

C O N O P T 3   x86/MS Windows version 3.14P-016-057
Copyright (C)   ARKI Consulting and Development A/S

Bagsvaerdvej 246 A
DK-2880 Bagsvaerd, Denmark

Using default options.

The model has 3 variables and 2 constraints with 5 Jacobian elements, 4 
of which are nonlinear.
The Hessian of the Lagrangian has 2 elements on the diagonal, 1 
elements below the diagonal, and 2 nonlinear variables.

** Optimal solution. Reduced gradient less than tolerance.



GAMS

• LOWER     LEVEL     UPPER    MARGINAL

• ---- EQU CON1        9000.000  9000.000  9000.000   117.284      
• ---- EQU OBJ             .         .         .                                 1.000      

• LOWER     LEVEL     UPPER    MARGINAL

• ---- VAR P              1.000         1500.000        +INF       .         
• ---- VAR R              1.000          6.000             +INF       EPS       
• ---- VAR Z              -INF            3.4444E+6     +INF       .         

• **** REPORT SUMMARY :        0     NONOPT
• 0 INFEASIBLE
• 0  UNBOUNDED
• 0     ERRORS

Lagrange 
multiplier

values at the 
optimum

900 page Users Manual



GAMS Solvers

13 types of 
optimization
problems

LP - Linear Programming
linear economic model 
and linear constraints

NLP – Nonlinear Programming
nonlinear economic model and 
nonlinear constraints

MIP - Mixed Integer Programming
nonlinear economic model and 
nonlinear constraints with 
continuous and integer variables



GAMS Solvers

32 Solvers

new global optimizer

DICOPT One of several MINLP optimizers

MINOS a sophisticated NLP optimizer  developed 
at Stanford OR Dept uses GRG and SLP



Mathematical Basis for Optimization
is the Kuhn Tucker Necessary Conditions

General Statement of a Mathematical Programming Problem

Minimize: y(x)

Subject to: fi(x) <# 0 for i = 1, 2, ..., h

fi(x) = 0   for i = h+1, ..., m

y(x) and fi(x) are twice continuously 
differentiable real valued functions.



Kuhn Tucker Necessary Conditions

xn+i are the slack variables used to convert 
the inequality constraints to equalities.
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Lagrange Function
– converts constrained problem to an unconstrained one

λi are the Lagrange multipliers



Kuhn Tucker Necessary Conditions

y(x*)         h  fi  (x*)         m      fi (x*)1. —        +   i —          +    i —         = 0    for j = 1,2,..,nxj      i=1  xj          i=h+1    xj

2. fi(x*)   0 for i = 1, 2, ..., h

3. fi(x*)  = 0 for i = h+1, ..., m

4. i fi(x*) = 0 for i = 1, 2, ..., h

5. i  > 0 for i = 1, 2, ..., h

6. i is unrestricted in sign for i = h+1, ..., m (2-45)

y(x*)         h  fi  (x*)         m      fi (x*)1. —        +   i —          +    i —         = 0    for j = 1,2,..,nxj      i=1  xj          i=h+1    xj

Necessary conditions for a relative minimum at x*



Lagrange Multipliers

Treated  as an:

• Undetermined multiplier – multiply 
constraints by λi and add to y(x)

• Variable - L(x,λ)

• Constant – numerical value computed 
at the optimum



Lagrange Multipliers
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Lagrange Multipliers
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Rearrange the partial derivatives in the second term



Lagrange Multipliers
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Call the ratio of partial derivatives in the (  ) a Lagrange multiplier, λ

Lagrange multipliers are a ratio of partial derivatives at the optimum.

(   ) = λ



Lagrange Multipliers
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Define L = y +λf , an unconstrained function
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procedure

Interpret  L as an unconstrained function, and the partial derivatives set 
equal to zero are the necessary conditions for this unconstrained function



Lagrange Multipliers

Optimize:  y(x1,x2)
Subject to:  f(x1,x2) = b

Manipulations give:

∂y =  - λ
∂b

Extends to:

∂y =  - λi shadow price ($ per unit of bi)
∂bi



Geometric Representation of an LP Problem

max: 3A + 4B = P
s.t.    4A + 2B < 80

2A + 5B < 120

Maximum at vertex
P = 110

A = 10, B = 20

objective function is a plane  
no interior optimum



LP Example
Maximize: 

x1+ 2x2 = P
Subject to:

2x1 + x2 + x3 = 10
x1 + x2 + x4 =   6
-x1 +  x2 + x5 = 2

-2x1 +  x2 + x6 = 1

4 equations and 6 unknowns, set 2 of the xi =0 and solve for 4 of the xi.

Basic feasible solution: x1 = 0, x2 = 0, x3 = 10, x4 = 6, x5 = 2, x6 =1

Basic solution: x1 = 0, x2 = 6, x3 = 4, x4 = 0, x5 = -4, x6 = -5



Final Step in Simplex Algorithm

Maximize: - 3/2 x4 - 1/2 x5 = P - 10 P = 10 
Subject to: 

x3 - 3/2 x4 + 1/2 x5 = 2 x3 = 2
1/2 x4 - 3/2 x5 + x6 = 1 x6 = 1

x1 + 1/2 x4 - 1/2 x5 = 2 x1 = 2
x2 + 1/2 x4 + 1/2 x5 = 4 x2 = 4

x4 = 0
x5 = 0

Simplex algorithm exchanges variables that are zero with ones 
that are nonzero, one at a time to arrive at the maximum



Lagrange Multiplier Formulation
Returning to the original problem

Max: (1+2λ1+ λ2 - λ3- 2λ4) x1

(2+λ1+ λ2 + λ3 +λ4)x2 +

λ1 x3 + λ2 x4 + λ3 x5 + λ4x6

- (10λ1 + 6λ2 + 2λ3 + λ4)  =  L = P

Set partial derivatives with respect to x1, x2, x3, and x6 equal 
to zero (x4 and x5 are zero) and  and solve resulting 
equations for the Lagrange multipliers



Lagrange Multiplier Interpretation

Maximize: 0x1 +0x2 +0 x3 - 3/2 x4 - 1/2 x5 +0x6 = P - 10 P = 10 
Subject to: 

x3 - 3/2 x4 + 1/2 x5 = 2 x3 = 2
1/2 x4 - 3/2 x5 + x6 = 1 x6 = 1

x1 +  1/2 x4 - 1/2 x5 = 2 x1 = 2
x2 +  1/2 x4 +   1/2 x5 = 4 x2 = 4

x4 = 0
x5 = 0

-(10λ1 + 6λ2 + 2λ3 + λ4)  =  L = P = 10

The final step in the simplex algorithm is used to evaluate the Lagrange 
multipliers.  It is the same as the result from analytical methods.

(1+2λ1+ λ2 - λ3- 2λ4)=0

(2+λ1+ λ2 + λ3 +λ4)=0

λ1=0

λ2=-3/2 λ3=-1/2 λ4=0



Objective Function:

Maximize: c1x1 + c2x2 + ... + cnxn = p (4-1a)

Constraint Equations:

Subject to: a11x1 + a12x2 + ... + a1nxn < b1 (4-1b)

a21x1 + a22x2 + ... + a2nxn < b2
. . . . . . . . .
. . . . . . . . .
am1x1 + am2x2 + ... + amnxn < bm

xj > 0 for j = 1,2,...n (4-1c)

General Statement of the Linear Programming Problem



Multiply each constraint equation, (4-1b), by the Lagrange multiplier λi and add to the 
objective function 

Have x1 to xm be values of the variables in the basis, positive numbers

Have xm+1 to xn be values of the variables that are not in the basis and are zero. 

LP Problem with Lagrange Multiplier Formulation

positive
in the 
basis

not equal to zero, negative equal to zero
not in basis

equal to zero from 
∂p/∂xm=0

Left hand side = 0 and p = - ∑biλi



Sensitivity Analysis

• Use the results from the final step in the simplex 
method to determine the range on the variables 
in the basis where the optimal solution remains 
optimal for changes in:

• bi availability of raw materials demand for 
product, capacities of the process units

• cj sales price and costs
• See Optimization for Engineering Systems book 

for equations at www.mpri.lsu.edu



Nonlinear Programming

Three standard methods – all use the same information

Successive Linear Programming

Successive Quadratic Programming

Generalized Reduced Gradient Method

Optimize:   y(x) x = (x1, x2,…, xn)
Subject to:  fi(x) =0 for i = 1,2,…,m   n>m

∂y(xk) ∂fi(xk) evaluate partial derivatives at xk
∂xj ∂xj



Generalized Reduced Gradient Direction

Reduced Gradient Line

Specifies how to change xnb
to have the largest change in 
y(x) at xk

)(, knbknb xYxx Ñ+= a



Generalized Reduced Gradient Algorithm

Minimize: y(x) = y(x) Y[xk,nb +  α Y(xk)] = Y(α)
Subject to:   fi(x) = 0

(x) = (xb,xnb)  m basic variables, (n-m) nonbasic variables
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Generalized Reduced Gradient Trajectory

Minimize : -2x1 - 4x2 + x1
2 + x2

2 + 5 
Subject to: - x1 + 2x2 < 2 

x1 + x2 < 4



On-Line Optimization
• Automatically adjust operating conditions with the plant’s distributed 

control system

• Maintains operations at optimal set points

• Requires the solution of three NLP’s in sequence
gross error detection and data reconciliation
parameter estimation
economic optimization

BENEFITS

• Improves plant profit by 10%

• Waste generation and energy use are reduced

• Increased understanding of plant operations



Gross  Error
Detection

and 
Data Reconcilation

Optimization Algorithm
     Economic Model  
         Plant Model

plant
measurements

  setpoints
      for
controllers

  optimal
 operating
 conditions

economic model
parameters

updated plant 
parameters

Distributed Control System

sampled
plant data

Parameter
Estimation

setpoint
targets

reconciled
plant data



Some Companies Using On-Line Optimization

United States Europe
Texaco OMV Deutschland
Amoco Dow Benelux
Conoco Shell
Lyondel OEMV
Sunoco Penex
Phillips Borealis AB
Marathon DSM-Hydrocarbons
Dow
Chevron
Pyrotec/KTI
NOVA Chemicals (Canada)
British Petroleum

Applications  
mainly crude units in refineries and ethylene
plants



Companies Providing On-Line Optimization

Aspen Technology - Aspen Plus On-Line
- DMC Corporation
- Setpoint
- Hyprotech Ltd. 

Simulation Science - ROM
- Shell - Romeo

Profimatics - On-Opt
- Honeywell

Litwin Process Automation - FACS

DOT Products, Inc. - NOVA 



Distributed Control System

Runs control algorithm three times a second

Tags - contain about 20 values for each
measurement, e.g. set point, limits, alarm

Refinery and large chemical plants have 5,000
- 10,000 tags

Data Historian

Stores instantaneous values of measurements
for each tag every five seconds or as specified.

Includes a relational data base for laboratory
and other measurements not from the DCS

Values are stored for one year, and require
hundreds of megabites

Information made available over a LAN in
various forms, e.g. averages, Excel files. 



Key Elements 

  Gross Error Detection 

  Data Reconciliation

  Parameter Estimation

   Economic Model 
 (Profit Function)

 Plant Model
 (Process Simulation)

Optimization Algorithm



DATA   RECONCILIATION

Adjust process data to satisfy material and
energy balances.

Measurement error - e

e = y - x 

y = measured process variables
x = true values of the measured variables

~x = y + a 

a - measurement adjustment



Heat 
Exchanger

Chemical 
Reactor

y1 

730 kg/hr

x1

y2

718 kg/hr

x2

y3

736 kg/hr

x3

Material Balance             x1 = x2 x1 - x2 =  0

Steady State                    x 2 =  x 3 x2 - x3 =  0

Data Reconciliation



y1 

730 kg/hr

x1

y3

736 kg/hr

x3

Heat 
Exchanger

Chemical 
Reactor

y1 

730 kg/hr

x1
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718 kg/hr

x2

y3

736 kg/hr

x3

0=Axú
û

ù
ê
ë

é
=

ú
ú
ú

û

ù

ê
ê
ê

ë

é

ú
û

ù
ê
ë

é
-

-
0
0

110
011

3

2

1

x
x
x

Data Reconciliation



min :
x

y xi i

ii

n -æ
è
ç

ö
ø
÷

=
å s

2

1

Subject to: Ax = 0

Analytical solution using LaGrange Multipliers

! ( )

! [

x y QA AQA Ay

x

T T

T

= -

=

-1

728   728   728]

Q = 
diag[Fi]

Data Reconciliation using Least Squares



Data Reconciliation
Measurements having only random errors - least squares

Minimize:
y x

x

Subject to: f(x)
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s i = standard deviation of yi

f(x) -  process model
       -  linear or nonlinear



Types of Gross Errors

Source:  S. Narasimhan and C. Jordache, Data Reconciliation and Gross
Error Detection, Gulf Publishing Company, Houston, TX (2000)



Combined Gross Error Detection and Data Reconciliation

Measurement Test Method - least squares

Minimize: (y - x)TQ-1(y - x) = eTQ-1e
 x, z

 Subject to: f(x, z, ) = 0

xL  x  xU

zL  z  zU

Test statistic:
      if ei=yi-xi / i  > C measurement contains a gross error

Least squares is based on only random errors being present Gross errors
cause numerical difficulties
Need methods that are not sensitive to gross errors



Methods Insensitive to Gross Errors

Tjao-Biegler’s Contaminated Gaussian
Distribution
 

P(yi  xi) = (1-η)P(yi  xi, R) + η P(yi  xi, G)

P(yi  xi, R) = probability distribution function for the random error
P(yi  xi, G) = probability distribution function for the gross error.
Gross error occur with probability η 

Gross Error Distribution Function

P(y x,G) 1
2πbσ

e
(y x)2

2b 2σ2P(y x,G) 1
2πbσ

e
(y x)2

2b 2σ2



Tjao-Biegler Method
Maximizing this distribution function of measurement
errors or minimizing the negative logarithm subject to the
constraints in plant model, i.e.,

Minimize:
    x

Subject to: f(x) = 0 plant model
xL  x  xU bounds on the process

variables

A NLP, and values are needed for   and b

Test for Gross Errors

 If P(yi xi, G)  (1- )P(yi xi, R), gross error
probability of a  probability of a
gross error random error

i
ln (1 )e

(yi xi)
2

2 i
2

b
e

(yi xi)
2

2b 2 i
2

ln 2 i

i
yi xi

i
> 2b 2

b 2 1
ln b(1 )

Minimize:
    x

i
ln (1 )e

(yi xi)
2

2 i
2

b
e

(yi xi)
2

2b 2 i
2

ln 2 i

i
yi xi

i
> 2b 2

b 2 1
ln b(1 )



Robust Function Methods

   Minimize: -  [ (yi, xi) ]
   x   i

Subject to: f(x) = 0
xL  x  xU  

Lorentzian distribution

Fair function

c is a tuning parameter
Test statistic

i = (yi - xi )/ i 

( i)
1

1 1
2

2
i

( i,c) c 2 i

c
log 1 i

c

   Minimize: -  [ (yi, xi) ]
   x   i

Subject to: f(x) = 0

Fair function

( i)
1

1 1
2

2
i

( i,c) c 2 i

c
log 1 i

c



Parameter Estimation
Error-in-Variables Method

Least squares

Minimize: (y - x)T -1(y - x) = eT -1e
     
Subject to: f(x, ) = 0

 - plant parameters

Simultaneous data reconciliation and parameter
estimation

Minimize: (y - x)T -1(y - x) = eT -1e
    x, 
Subject to: f(x, ) = 0

another nonlinear programming problem

Minimize: (y - x)T -1(y - x) = eT -1e
     

Minimize: (y - x)T -1(y - x) = eT -1e
    x, 



Three Similar Optimization Problems

Optimize: Objective function
Subject to: Constraints are the plant 

model

Objective function

data reconciliation - distribution function
parameter estimation - least squares
economic optimization - profit function 

Constraint equations

material and energy balances
chemical reaction rate equations
thermodynamic equilibrium relations
capacities of process units
demand for product
availability of raw materials



Key Elements of On-Line Optimization

Optimization
algorithm

Combined gross 
error detection and 
data reconciliation

Plant data
from DCS

Plant model

Plant
economic
optimization

Optimal
setpoints
to DCS

Cited Benefits:

ò Identifying instrument
   malfunctions
ò Process monitoring

ò Improved equipment
performance

ò Process monitoring

ò Improved plant profit
ò Reduced emission and

energy use

Simultaneous data
reconciliation and
parameter estimation  



Interactive On-Line Optimization Program

1. Conduct  combined gross error detection and data
reconciliation to detect and rectify gross errors in
plant data sampled from distributed control system
using the Tjoa-Biegler's method (the contaminated
Gaussian distribution) or robust method (Lorentzian
distribution).

This step generates a set of measurements containing
only random errors for parameter estimation.

2. Use this set of measurements for simultaneous
parameter estimation and data reconciliation using
the least squares method.

This step provides the updated parameters in the
plant model for economic optimization.

3. Generate optimal set points for the distributed control
system from the economic optimization using the
updated plant and economic models.



Interactive On-Line Optimization Program

 Process and economic models are entered as
equations in a form similar to Fortran

The program writes and runs three GAMS       
programs.

Results are presented in a summary form, on a
process flowsheet and in the full GAMS output

The program and users manual (120 pages) can be
downloaded from the LSU Minerals Processing
Research Institute web site

URLhttp://www.mpri.lsu.edu

Interactive On-Line Optimization Program





Mosaic-Monsanto Sulfuric Acid Plant
3,200 tons per day of 93% Sulfuric Acid, Convent, Louisiana

Air
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Pump Tank
98% H2SO4

Acid Dilution Tank
93% H2SO4

93% H2SO4
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W

SO3

Heat EX.

Heat

SH

Dry Acid Cooler
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Cooler



Motiva Refinery Alkylation Plant
15,000 barrels per day, Convent, Louisiana, reactor section, 4 Stratco reactors

 1

5E-628

5E-629,
630

5E-633

5C-614 Acid Settler
5C-631

Fresh Acid

5C-623

Acid Settler
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Acid Settler
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R3 R7
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R12 R16
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HC38HC34

HC45HC41

 2

 3
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HC26 HC24
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Reactor

STFD

Isobutane
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R6

R11 R15



Steady State Detection

execution

frequency

settling

time

settling

time

execution

frequency

output
variable

output
variable

time

time

a.  Time between optimizations is longer than settling time

b.  Time between optimizations is less than settling time

execution

frequency

settling

time

optimization optimization optimization

optimization optimization optimization

execution

frequency

Execution frequency must 
be greater than the plant 
settling time (time to 
return to steady state).



On-Line Optimization - Distributed Control 
System Interface Plant Steady?

No
Wait 
1minute

Parameter Estimation

Economic Optimization 

Plant Steady?

Implement Optimal
Setpoints

Line-Out Period
90 minutes

Selected plant
key measurements

No

Selected plant
measurements &
controller limits

Plant Model:
Measurements
Equality constraints

Plant Model:
Equality constraints

Validated measurements

Updated parameters

Plant model
Economic model
Controller limits

Data Validation

Plant must at steady state 
when data extracted from 
DCS and when set points 
sent to DCS.

Plant models are steady state 
models.

Coordinator program



Some Other Considerations
Redundancy

Observeability

Variance estimation

Closing the loop

Dynamic data reconciliation
 and parameter estimation



Additional Observations

Most difficult part of on-line optimization is developing and
validating the process and economic models.

Most valuable information obtained from on-line optimization is a
more thorough understanding of the process



Mixed Integer Programming

Numerous Applications

Batch Processing

Pinch Analysis

Optimal Flowsheet Structure

Branch and Bound Algorithm

Solves MILP

Used with NLP Algorithm to solve MINLP



Mixed Integer Process Example

Process 1

A  B

Process 2
B  C

Process 3

B  C

F1A  
Flow rate of A
(tons/hr)

F2B
Flow rate of B
(tons/hr)

F6B

F7B

F3A
Flow rate of A
unreacted (tons/hr)

F4B
Flow rate of B
purchased (tons/hr)

F5B

F11B
Flow rate of B
unreacted (tons/hr)

F9B
Flow rate of B
unreacted (tons/hr)

F8C  
Flow rate of C (tons/hr)

F10C  
Flow rate of C (tons/hr)

F12C 
Flow rate of C
product (tons/hr)

2

4

5

6

7

8

12

10
3

9

11

1 Process 1

A  B

Process 2
B  C

Process 3

B  C

F1A  
Flow rate of A
(tons/hr)

F2B
Flow rate of B
(tons/hr)

F6B

F7B

F3A
Flow rate of A
unreacted (tons/hr)

F4B
Flow rate of B
purchased (tons/hr)

F5B

F11B
Flow rate of B
unreacted (tons/hr)

F9B
Flow rate of B
unreacted (tons/hr)

F8C  
Flow rate of C (tons/hr)

F10C  
Flow rate of C (tons/hr)

F12C 
Flow rate of C
product (tons/hr)

2

4

5

6

7

8

12

10
3

9

11

1

Produce C from either Process 2 or Process 3

Make B from A in Process 1 or purchase B



Mixed Integer Process Example
operating cost fixed cost feed cost sales

max: -250 F1
A - 400 F6

B - 550 F7
B - 1,000y1 - 1,500y2 - 2,000y3 -500 F1

A - 950 F4
B + 1,800 F12

C

subject to:     mass yields -0.90 F1
A + F2

B = 0

-0.10 F1
A + F3

A = 0

-0.82 F6
B + F8

C = 0

-0.18 F6
B + F9

B = 0

-0.95 F7
B + F10

C = 0

-0.05 F7
B + F11

B = 0

node MB F2
B + F4

B - F5
B = 0

F5
B = F6

B - F7
B = 0

F8
C + F10

C - F12
C= 0

availability of A  F1
A < 16 y1 Availability of raw material A to make B

availability of B  F4
B < 20 y4 Availability of purchased material B

demand for C F8
C < 10 y2 Demand for C from either Process 2,

F10
C < 10 y3 stream F8

C or Process 3, stream F10
C

integer constraint y2 +  y3 = 1       Select either Process 1 or Purchase B

y1 +  y4 =  1     Select either Process 2 or 3
Branch and bound algorithm used for optimization



Branch and Bound Algorithm

LP Relaxation Solution

Max: 5x1 + 2x2 =P P = 22.5

Subject to: x1 + x2 < 4.5 x1 = 4.5

-x1 +2x2 < 6.0 x2 =  0

x1 and x2 are integers > 0

Branch on x1, it is not an integer in the LP Relaxation Solution

Form two new problems by adding constraints x1>5 and x1<4

Max: 5x1 + 2x2 =P Max: 5x1 + 2x2 =P

Subject to: x1 +  x2 < 4.5 Subject to: x1 +  x2 < 4.5

-x1 +2x2 < 6.0 -x1 + 2x2 < 6.0

x1 > 5 x1 < 4



Branch and Bound Algorithm

Max: 5x1 + 2x2 =P Max: 5x1 + 2x2 =P
Subject to: x1 + x2 < 4.5 Subject to: x1 + x2 < 4.5

-x1 +2x2 < 6.0 -x1 +2x2 < 6.0
x1 > 5 x1 < 4

infeasible LP solution P = 21.0
no further evaluations required x1 = 4

x2 = 0.5
branch on x2

Form two new problems by adding constraints x2 > 1 and x2< 0

Max: 5x1 + 2x2 =P Max: 5x1 + 2x2 =P
Subject to: x1 + x2 < 4.5 Subject to: x1 + x2 < 4.5 

-x1 +2x2 < 6.0 -x1 +2x2 < 6.0 
x1 < 4 x1 < 4

x2 > 1 x2    < 0 =0



Branch and Bound Algorithm

Max: 5x1 + 2x2 =P Max: 5x1 + 2x2 =P
Subject to: x1 + x2 < 4.5 Subject to: x1 + x2 < 4.5 

-x1 +2x2 < 6.0 -x1 +2x2 < 6.0 
x1 < 4 x1 < 4

x2 > 1 x2 < 0

P = 19.5 P = 20
x1 = 3.5 x1 = 4
x2 = 1 x2 = 0

optimal solution



Branch and Bound Algorithm

22.5

Infeasible 21.0

19.5 20

LP relaxation solution

X1 = 4.5
X2 = 0

X1 > 5 X1 < 4

X1 < 4
X2 > 1

X1 <
4
X2 <
0



Branch and Bound Algorithm

inf

13.7 17

Inf 12 16.8 inf

15.6

17.4

15 inf

Integer solution

Integer solution –
optimal solution



Mixed Integer Nonlinear Programming

MINLP  Problem

Fix Binary Variables 'Y'

Solve Relaxed NLP Problem 
  To Get Upper Bound Z  U

Solve MILP Master Problem
    To Get Lower Bound z  L

Is  z L    z  U ?

Optimal Solution

Yes

New Values of Y

No

Figure 1.1(b).  Flow Chart of GBD and OA/ER Algorithm to
Solve MINLP Problems.

MINLP  Problem

Fix Binary Variables 'Y'

Solve Relaxed NLP Problem 
  To Get Upper Bound Z  U

Solve MILP Master Problem
    To Get Lower Bound z  L

Is  z L    z  U ?

Optimal Solution

Yes

New Values of Y

No

Figure 1.1(b).  Flow Chart of GBD and OA/ER Algorithm to
Solve MINLP Problems.

Flow Chart of GBD Algorithm to Solve MINPL Problems, 
Duran and Grossmann, 1986, Mathematical Programming, Vol. 36, p. 307-339



Triple Bottom Line

Triple Bottom Line = 
Product Sales 

- Manufacturing Costs (raw materials,  energy costs, others)
- Environmental Costs (compliance with environmental regulations) 
- Sustainable Costs (repair damage from emissions within regulations)

Triple Bottom Line = 
Profit (sales – manufacturing costs) 

- Environmental Costs
+ Sustainable (Credits – Costs) (credits from reducing emissions)

Sustainable costs are costs to society from damage to the environment caused by 
emissions within regulations, e.g., sulfur dioxide 4.0 lb per ton of sulfuric acid produced.

Sustainable development: Concept that development should meet the needs of the 
present without sacrificing the ability of the future to meet its needs    



Optimization of Chemical Production Complexes

• Opportunity
– New processes for conversion of surplus carbon 

dioxide to valuable products

• Methodology
– Chemical Complex Analysis System

– Application to chemical production complex in 
the lower Mississippi River corridor 



Plants in the lower Mississippi River Corridor

Source: Peterson, R.W., 2000



Some Chemical Complexes in the World

• North America
– Gulf coast petrochemical complex in Houston area 
– Chemical complex in the Lower Mississippi River 

Corridor 
• South America

– Petrochemical district of Camacari-Bahia (Brazil)
– Petrochemical complex in Bahia Blanca (Argentina)

• Europe
– Antwerp port area (Belgium)
– BASF in Ludwigshafen (Germany)

• Oceania
– Petrochemical complex at Altona (Australia)
– Petrochemical complex at Botany (Australia)



clay- decant water rain 100's of evaporated
settling fines decant acres of
ponds (clay, P2O5) water Gypsum gypsum
reclaim tailings Stack

old mines (sand) slurried gypsum
phosphate >75 BPL

rock rock slurry <68 BPL
[Ca3(PO4)2...] slurry water 2.8818

mine H2SiF6 0.2212 rock vapor
rock 4.5173 H2O

Frasch sulfur 1.1891 3.6781 H2SO4 3.6781 others 1.0142 0.3013 Granular 0.7487
mines/ air 7.6792 5.9098 vent phosphoric Triple GTSP [0-46-0]  
wells BFW 5.7683 sulfuric 1.9110 LP steam 2.3625 acid 2.6460 P2O5 0.5027 Super

H2O 0.7208 acid 0.4154 blowdown plant cooled inert Phosphate 0.0097
Claus 1.1891 plant 2.8665 LP 2.3625 0.1238 HF
recovery 0.5754 0.0012 others H2O 1.8900 H3PO4 selling 0.0265
from HC's HP steam H2O

IP 3.8135 LP P2O5 2.1168 Mono- MAP [11-52-0]
power 0.8301 H2O NH3 0.4502 & Di-

fuel 0.0501 gene- 0.1373 CO2 0.0256 Ammonium
BFW 1.2016 -ration 1,779 elctricity 0.0995 H2O for DAP %N inert Phosphates DAP [18-46-0]

TJ vent control 0.2917 granulation
air 0.9337 air 0.0536 NH3 urea

nitric AN [NH4NO3]
air 0.7200 NH3 0.6581 0.0493 acid plant HNO3 0.3306 0.2184

natural gas 0.2744 CO2 0.7529 NH3 0.3306 Ammonium NH4NO3 0.0279
ammonia NH3 Nitrate plant H2O UAN UAN

steam plant H2O 0.0938 0.0483 0.0331 urea plant 0.0605
0.5225 purge 0.0121 0.0567 urea 0.0256 0.0326

CO2 0.0732 urea 0.0742 urea [CO(NH2)2]
LP steam urea H2O 0.0299 0.0416

other use 0.0374 plant cw 0.0374
3.2735 NH3 0.0001

CO2 0.0001

CO2 0.0045 acetic 0.0082
0.0044 acid acetic acid

0.6124 CO2 0.0629 vent 0.0008 H2O 0.0012
vent steam 0.0511 methanol CH3OH

0.0682 plant 0.1814

CH4 0.0005

benzene 0.5833
ethylene 0.2278 ethyl- 0.8618 0.7533 styrene
benzene 0.0507 benzene ethylbenzene ethylbenzene 0.8618 0.0355 fuel gas

styrene 0.0067 toluene
0.0156 C
0.0507 benzene

0.0000

plant

bene-
-fici-

-ation

0.1771

0.7518
1.8775

0.2931

0.7137

0.1695

5.3060

Plants in the lower Mississippi River Corridor, Base Case. Flow Rates in Million Tons Per Year



Commercial Uses of CO2

Chemical synthesis in the U. S. consumes 
110 million m tons per year of CO2

− Urea (90 million tons per year)
– Methanol (1.7 million tons per year)
– Polycarbonates
– Cyclic carbonates
– Salicylic acid
– Metal carbonates



Surplus Carbon Dioxide
• Ammonia plants produce 0.75 million tons per 

year in lower Mississippi River corridor.

• Methanol and urea plants consume 0.14 
million tons per year.

• Surplus high-purity carbon dioxide 0.61
million tons per year vented to atmosphere.

• Plants are connected by CO2 pipelines.



Greenhouse Gases as Raw Material

From Creutz and Fujita, 2000



Some Catalytic Reactions of CO2
Hydrogenation Hydrolysis and Photocatalytic Reduction

CO2 + 3H2 ® CH3OH + H2O  methanol CO2 + 2H2O® CH3OH + O2

2CO2 + 6H2 ® C2H5OH + 3H2O ethanol CO2 + H2O ® HC=O-OH + 1/2O2

CO2 + H2 ® CH3-O-CH3 dimethyl ether CO2 + 2H2O ® CH4 + 2O2

Hydrocarbon Synthesis

CO2 + 4H2 ® CH4 + 2H2O methane and higher HC

2CO2 + 6H2 ® C2H4 + 4H2O ethylene and higher olefins

Carboxylic Acid Synthesis Other Reactions

CO2 + H2 ® HC=O-OH formic acid CO2 + ethylbenzene ®styrene

CO2 + CH4 ® CH3-C=O-OH acetic acid CO2 + C3H8 ® C3H6 + H2 + CO 
dehydrogenation of propane

CO2 + CH4 ® 2CO  + H2 reforming

Graphite Synthesis

CO2 + H2 ® C + H2O CH4 ® C + H2
CO2 + 4H2 ® CH4 + 2H2O

Amine Synthesis
CO2 + 3H2 + NH3 ® CH3-NH2 + 2H2O methyl amine and 

higher amines



Methodology for Chemical Complex Optimization 
with New Carbon Dioxide Processes

• Identify potentially new processes
• Simulate with HYSYS
• Estimate utilities required
• Evaluate value added economic analysis
• Select best processes based on value added 

economics
• Integrate new processes with existing ones to 

form a superstructure for optimization



Twenty Processes Selected for HYSYS Design
Chemical Synthesis Route Reference

Methanol CO2 hydrogenation Nerlov and Chorkendorff, 1999
CO2 hydrogenation Toyir, et al., 1998
CO2 hydrogenation Ushikoshi, et al., 1998
CO2 hydrogenation Jun, et al., 1998
CO2 hydrogenation Bonivardi, et al., 1998

Ethanol CO2 hydrogenation Inui, 2002
CO2 hydrogenation Higuchi, et al., 1998

Dimethyl Ether CO2 hydrogenation Jun, et al., 2002

Formic Acid CO2 hydrogenation Dinjus, 1998

Acetic Acid From methane and CO2 Taniguchi, et al., 1998

Styrene Ethylbenzene dehydrogenation Sakurai, et al., 2000
Ethylbenzene dehydrogenation Mimura, et al., 1998

Methylamines From CO2, H2, and NH3 Arakawa, 1998

Graphite Reduction of CO2 Nishiguchi, et al., 1998

Hydrogen/ Methane reforming Song, et al., 2002
Synthesis Gas Methane reforming Shamsi, 2002

Methane reforming Wei, et al., 2002
Methane reforming Tomishige, et al., 1998

Propylene Propane dehydrogenation Takahara, et al., 1998
Propane dehydrogenation C & EN, 2003



Integration into Superstructure

• Twenty processes simulated

• Fourteen processes selected based 
on value added economic model

• Integrated into the superstructure for 
optimization with the System



New Processes Included in Chemical Production Complex

Product Synthesis Route Value Added Profit (cents/kg)

Methanol CO2 hydrogenation 2.8
Methanol CO2 hydrogenation 3.3
Methanol CO2 hydrogenation 7.6
Methanol CO2 hydrogenation 5.9
Ethanol CO2 hydrogenation 33.1
Dimethyl Ether CO2 hydrogenation 69.6
Formic Acid CO2 hydrogenation 64.9
Acetic Acid From CH4 and CO2 97.9
Styrene Ethylbenzene dehydrogenation 10.9
Methylamines From CO2, H2, and NH3 124
Graphite Reduction of CO2 65.6
Synthesis Gas Methane reforming 17.2
Propylene Propane dehydrogenation 4.3
Propylene Propane dehydrogenation with CO2 2.5



Application of the Chemical Complex Analysis 
System to Chemical Complex in the Lower 

Mississippi River Corridor

• Base case – existing plants

• Superstructure – existing and 
proposed new plants

• Optimal structure – optimal 
configuration from existing and 
new plants



Chemical Complex Analysis System



clay- decant water rain 100's of evaporated
settling fines decant acres of
ponds (clay, P2O5) water Gypsum gypsum
reclaim tailings Stack

old mines (sand) slurried gypsum
phosphate >75 BPL

rock rock slurry <68 BPL
[Ca3(PO4)2...] slurry water 2.8818

mine H2SiF6 0.2212 rock vapor
rock 4.5173 H2O

Frasch sulfur 1.1891 3.6781 H2SO4 3.6781 others 1.0142 0.3013 Granular 0.7487
mines/ air 7.6792 5.9098 vent phosphoric Triple GTSP [0-46-0]  
wells BFW 5.7683 sulfuric 1.9110 LP steam 2.3625 acid 2.6460 P2O5 0.5027 Super

H2O 0.7208 acid 0.4154 blowdown plant cooled inert Phosphate 0.0097
Claus 1.1891 plant 2.8665 LP 2.3625 0.1238 HF
recovery 0.5754 0.0012 others H2O 1.8900 H3PO4 selling 0.0265
from HC's HP steam H2O

IP 3.8135 LP P2O5 2.1168 Mono- MAP [11-52-0]
power 0.8301 H2O NH3 0.4502 & Di-

fuel 0.0501 gene- 0.1373 CO2 0.0256 Ammonium
BFW 1.2016 -ration 1,779 elctricity 0.0995 H2O for DAP %N inert Phosphates DAP [18-46-0]

TJ vent control 0.2917 granulation
air 0.9337 air 0.0536 NH3 urea

nitric AN [NH4NO3]
air 0.7200 NH3 0.6581 0.0493 acid plant HNO3 0.3306 0.2184

natural gas 0.2744 CO2 0.7529 NH3 0.3306 Ammonium NH4NO3 0.0279
ammonia NH3 Nitrate plant H2O UAN UAN

steam plant H2O 0.0938 0.0483 0.0331 urea plant 0.0605
0.5225 purge 0.0121 0.0567 urea 0.0256 0.0326

CO2 0.0732 urea 0.0742 urea [CO(NH2)2]
LP steam urea H2O 0.0299 0.0416

other use 0.0374 plant cw 0.0374
3.2735 NH3 0.0001

CO2 0.0001

CO2 0.0045 acetic 0.0082
0.0044 acid acetic acid

0.6124 CO2 0.0629 vent 0.0008 H2O 0.0012
vent steam 0.0511 methanol CH3OH

0.0682 plant 0.1814

CH4 0.0005

benzene 0.5833
ethylene 0.2278 ethyl- 0.8618 0.7533 styrene
benzene 0.0507 benzene ethylbenzene ethylbenzene 0.8618 0.0355 fuel gas

styrene 0.0067 toluene
0.0156 C
0.0507 benzene

0.0000

plant

bene-
-fici-

-ation

0.1771

0.7518
1.8775

0.2931

0.7137

0.1695

5.3060

Plants in the lower Mississippi River Corridor, Base Case. Flow Rates in Million Tons Per Year



Superstructure
vent

H2O S & SO2 CaCO3
reducing gas recovery H2O

air plant S water vent
gyp SO2 air

electric CaSiO3
rock furnace CaF2
SiO2 P2O5
C CO2

vent
air sulfuric CaO

dioxide H2O HCl HF
wood gas recovery HCL CaCl2

gyp plant SO2 rock to phosacid P2O5
others
H2O

H2O
rain 100's of evaporated
decant acres of
water Gypsum gypsum

clay- decant water Stack
settling fines >75BPL rock
ponds (clay, P2O5) slurried
reclaim tailings gypsum

old mines (sand)

phosphate H2SiF6 
rock rock slurry <68 BPL rock H2O

[Ca3(PO4)2...] slurry water others
mine phosphoric vapor

SO2 acid cooled LP
Frasch S H2SO4 plant Granular HF
mines/ air vent H2O P2O5 Triple GTSP [0-46-0]
wells BFW sulfuric LP steam LP P2O5 Super others

H2O acid blowdown P2O5 Phosphate
Claus plants others
recovery P2O5
from HC's HP steam P2O5

H2O
IP LP P2O5 Mono- MAP [11-52-0]

power H2O NH3 & Di-
fuel gene- CO2 H2O urea Ammonium DAP [18-46-0]
BFW -ration electricity vent for DAP %N P2O5 Phosphates

control granulation
air air NH3

nitric AN [NH4NO3]
air NH3 NH3 acid HNO3

natural gas CO2 Ammonium NH4NO3
ammonia NH3 Nitrate H2O UAN UAN

steam plant H2O urea plant
purge  NH3 urea

CO2 urea
LP steam urea H2O

plant cooled LP
other use NH3 purge

CO2 purge
CH3OH

vent
CO2

steam methanol CH3OH acetic CH3COOH
CH4 plant CO2 acid

CH4 H2O

CO2 CO2 new
acetic CH3COOH

CH4 acid

H2O
CO2 graphite C
CH4 & H2 H2 

H2
CO2 CO

methanol MeOH
CO2 CO H2 Bonivardi H2O
CH4 syngas H2

CO2 formic acid
H2 formic

H2 acid
propane propene

& CO2 CO
H2 propene H2 methyl- MMA

amines DMA
NH3 H2O

propane CO
propylene propylene

plant H2O CO2 EtOH
CO2 H2 H2 EtOH H2O

CO2 new CO CO
styrene styrene CO2 DME

ethylbenzene plant H2O H2 DME MeOH
H2O

benzene
ethylene ethyl- styrene
benzene benzene ethylbenzene fuel gas

styrene toluene
C
benzene

plant

bene-
-fici-

-ation

others

P2O5



Plants in the Superstructure
Plants in the Base Case
• Ammonia
• Nitric acid
• Ammonium nitrate
• Urea
• UAN
• Methanol
• Granular triple super 

phosphate
• MAP and DAP
• Sulfuric acid
• Phosphoric acid
• Acetic acid
• Ethylbenzene
• Styrene

Plants Added to form the Superstructure
• Acetic acid from CO2 and CH4

• Graphite and H2

• Syngas from CO2 and CH4

• Propane dehydrogenation
• Propylene from propane and CO2

• Styrene from ethylbenzene and CO2

• Methanol from CO2 and H2 (4)
• Formic acid
• Methylamines
• Ethanol
• Dimethyl ether 
• Electric furnace phosphoric acid
• HCl process for phosphoric acid
• SO2 recovery from gypsum
• S and SO2 recovery from gypsum



Superstructure Characteristics
Options

- Three options for producing phosphoric acid 
- Two options for producing acetic acid
- Two options for recovering sulfur and sulfur dioxide
- Two options for producing styrene 
- Two options for producing propylene
- Two options for producing methanol

Mixed Integer Nonlinear Program
843    continuous variables
23    integer variables

777    equality constraint equations for material and energy balances
64    inequality constraints for availability of raw materials

demand for product, capacities of the plants in the complex



Some of the Raw Material Costs, Product Prices and 
Sustainability Cost and Credits

Raw Materials Cost Sustainable Cost and Credits Cost/Credit Products Price
($/mt) ($/mt) ($/mt) 

Natural gas 235 Credit for CO2 consumption 6.50 Ammonia 224

Phosphate rock Debit for CO2 production 3.25 Methanol 271

Wet process 27 Credit for HP Steam 11 Acetic acid 1,032

Electro-furnace 34 Credit for IP Steam 7 GTSP 132

Haifa process 34 Credit for gypsum consumption 5.0 MAP 166

GTSP process 32 Debit for gypsum production 2.5 DAP 179

HCl 95 Debit for NOx production 1,025 NH4NO3 146

Sulfur Debit for SO2 production 192 Urea 179

Frasch 53 UAN 120

Claus 21 Phosphoric 496

Sources: Chemical Market Reporter and others for prices and costs,

and AIChE/CWRT report for sustainable costs.



Optimal Structure

clay- decant water rain 100's of evaporated
settling fines decant acres of
ponds (clay, P2O5) water Gypsum gypsum
reclaim tailings Stack

old mines (sand) slurried gypsum
phosphate >75 BPL

rock rock slurry <68 BPL
[Ca3(PO4)2...] slurry water 2.8818

mine H2SiF6 0.2212 rock vapor
rock 4.5173 H2O

Frasch sulfur 1.1891 3.6781 H2SO4 3.6781 others 1.0142 0.3013 Granular 0.7487
mines/ air 7.6792 5.9098 vent Triple GTSP [0-46-0]  
wells BFW 5.7683 sulfuric 1.9110 LP steam 2.3625 2.6460 P2O5 0.5027 Super 0.0097 HF

H2O 0.7208 acid 0.4154 blowdown cooled 0.1238 Phosphate
Claus 1.1891 2.8665 LP 2.3625 inert
recovery 0.5754 0.0012 others H2O 1.8900 H3PO4 selling 0.0265
from HC's H2O

HP steam

0.7137
IP 5.0147 LP P2O5 2.1168 Mono- MAP [11-52-0]

power 0.9910 H2O NH3 0.4502 & Di-
fuel 0.1068 gene- 0.2929 CO2 0.0256 Ammonium
BFW 2.5639 -ration 2,270 elctricity 0.0995 H2O for DAP %N 0.2917 Phosphates DAP [18-46-0]

TJ vent control urea inert granulation
air 0.9337 air 0.0283 NH3

nitric AN [NH4NO3]
air 0.7200 NH3 0.6581 0.0493 acid HNO3 0.3306 0.2184

natural gas 0.2744 CO2 0.7529 NH3 0.3306 Ammonium NH4NO3 0.0279
ammonia NH3 Nitrate H2O UAN UAN

steam H2O 0.0938 0.0483 0.0331 urea plant 0.0605
0.5225 purge 0.0121 0.0567 urea 0.0256 0.0326

CO2 0.0732 urea 0.0742 urea [CO(NH2)2]
LP steam urea H2O 0.0299 0.0416

other use 0.0374 plant cw 0.0374
4.4748 NH3 0.0001

CO2 0.0001

0.2250 CO2 0.0629 vent 0.0008
vent steam 0.0511 methanol CH3OH

0.0682 0.1814

CO2 0.0060 new
acetic 0.0082 CH3COOH

CH4 0.0022 acid

CO2 0.0679 H2O 0.0556
graphite C 0.0460

CH4 0.0367 & H2 0.0030 H2 sale 0.0000
H2

CO2 0.1174 CO 0.1494 CO2 0.0745 0.0779 formic acid
CH4 0.0428 syngas H2 0.0108 H2 0.0034 formic

acid

CO2 0.1042 0.0068 CO
0.0020 H2 H2 0.0134 methyl- 0.0264 MMA

0.0438 propene amines 0.0288 DMA
propane & NH3 0.0254 0.0809 H2O

H2 0.0418 propene

0.0439 0.0140 CO
propane propylene 0.0419 propene

plant 0.0090 H2O
CO2 0.0219 0.0010 H2

benzene 0.5833
ethylene 0.2278 ethyl- 0.8618 0.7533 styrene
benzene 0.0507 benzene ethylbenzene 0.8618 0.0355 fuel gas

styrene 0.0067 toluene
0.0156 C
0.0507 benzene

0.1695

1.8775

0.2931

5.3060

phosphoric 
acid 

(wet process)

bene-
-fici-

-ation

0.7518

0.0000

0.3859



Plants in the Optimal Structure from the Superstructure
Existing Plants in the Optimal Structure 
Ammonia 
Nitric acid 
Ammonium nitrate 
Urea 
UAN 
Methanol 
Granular triple super phosphate (GTSP) 
MAP & DAP 
Power generation  
Contact process for Sulfuric acid 
Wet process for phosphoric acid 
Ethylbenzene 
Styrene 
 
Existing Plants Not in the Optimal 
Structure 
Acetic acid 

New Plants in the Optimal Structure 
Formic acid 
Acetic acid – new process 
Methylamines 
Graphite 
Hydrogen/Synthesis gas 
Propylene from CO2 
Propylene from propane dehydrogenation 
 
New Plants Not in the Optimal Structure 
Electric furnace process for phosphoric acid 
HCl process for phosphoric acid 
SO2 recovery from gypsum process 
S & SO2 recovery from gypsum process 
Methanol - Bonivardi, et al., 1998 
Methanol – Jun, et al., 1998 
Methanol – Ushikoshi, et al., 1998 
Methanol – Nerlov and Chorkendorff, 1999 
Ethanol 
Dimethyl ether 
Styrene - new process 

 



Comparison of the Triple Bottom Line for the Base Case and Optimal 
Structure

 Base Case 
million dollars/year 

Optimal Structure 
 million dollars/year 

Income from Sales 1,316  1,544  
Economic Costs 
(Raw Materials and Utilities) 

  560   606 

Raw Material Costs   548    582  
Utility Costs     12     24  
Environmental Cost 
(67% of Raw Material Cost) 

 365  388  

Sustainable Credits (+)/Costs (-)    21    24  
Triple Bottom Line   412   574  

 



Carbon Dioxide Consumption in Bases Case 

and Optimal Structure

 Base Case 
million metric tons/year 

Optimal Structure 
million metric tons/year 

CO2 produced by NH3 plant 0.75  0.75  
CO2 consumed by methanol, 
urea and other plants 

0.14  0.51  

CO2 vented to atmosphere 0.61  0.24  
 

All of the carbon dioxide was not consumed in the optimal structure to maximize 
the triple bottom line

Other cases were evaluated that forced use of all of the carbon dioxide, but with 
a reduced triple bottom line



Multi-Criteria or Multi-Objective Optimization
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Subject to: fi(x) = 0

min: cost

max: reliability

min: waste generation

max: yield

max: selectivity



Multi-Criteria Optimization - Weighting Objectives Method

[ ])()()( 2211 xywxywxywopt pp+••++

Subject to: fi(x) = 0

with ∑ wi =  1

Optimization with a set of weights generates efficient 
or Pareto optimal solutions for the yi(x).

There are other methods for multi-criteria optimization, 
e.g., goal programming,  but this method is the most widely used one

Efficient or Pareto Optimal Solutions
Optimal points where attempting to improving the value of one objective 
would cause another objective to decrease. 



Multicriteria Optimization

P= Σ Product Sales - Σ Manufacturing Costs  - Σ Environmental Costs
max:

S = Σ Sustainable (Credits – Costs)

subject to: Multi-plant material and energy balances
Product demand, raw material availability, plant capacities



Multicriteria Optimization

Convert to a single criterion optimization problem

max:     w1P + w2 S  

subject to: Multi-plant material and energy balances
Product demand, raw material availability,
plant capacities



Multicriteria Optimization
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Monte Carlo Simulation

• Used to determine the sensitivity of the optimal solution to the 
costs and prices used in the chemical production complex  
economic model.

•Mean value and standard deviation of prices and cost are used.

• The result is the cumulative probability distribution, a curve of       
the probability as a function of the triple bottom line. 

• A value of the cumulative probability for a given value of the 
triple bottom line is the probability that the triple bottom line will 
be equal to or less that value.

• This curve is used to determine upside and downside risks 



Monte Carlo Simulation
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Conclusions

● The optimum configuration of plants in a chemical production complex 
was determined based on the triple bottom line including economic, 
environmental and sustainable costs using the Chemical Complex Analysis 
System. 

● Multcriteria optimization determines optimum configuration of plants in a 
chemical production complex to maximize corporate profits and maximize 
sustainable credits/costs.

● Monte Carlo simulation provides a statistical basis for sensitivity analysis 
of prices and costs in MINLP problems.  

● Additional information is available at www.mpri.lsu.edu 



Transition from Fossil Raw Materials to Renewables

Introduction of ethanol into the ethylene product chain.
Ethanol can be a valuable commodity for the manufacture of plastics, detergents,            
fibers, films and pharmaceuticals.

Introduction of glycerin into the propylene product chain.
Cost effective routes for converting glycerin to value-added products need to be 
developed. 

Generation of synthesis gas for chemicals by hydrothermal gasification of 
biomaterials. 

The continuous, sustainable production of carbon nanotubes to displace carbon 
fibers in the market.  Such plants can be integrated into the local chemical 
production complex.  

Energy Management Solutions:  Cogeneration for combined electricity and 
steam production (CHP) can substantially increase energy efficiency
and reduce greenhouse gas emissions. 



Global Optimization

Locate the global optimum of a mixed integer nonlinear programming problem   
directly.

Branch and bound separates the original problem into sub-problems that can be 
eliminated showing the sub-problems that can not lead to better points

Bound constraint approximation rewrites the constraints in a linear approximate 
form so a MILP solver can be used to give an approximate solution to the 
original problem.  Penalty and barrier functions are used for constraints that 
can not be linearized.

Branch on local optima to proceed to the global optimum using a sequence of 
feasible sets (boxes).

Box reduction uses constraint propagation, interval analysis convex relations 
and duality arguments involving Lagrange multipliers.

Interval analysis attempts to reduce the interval on the independent variables 
that contains the global optimum

Leading Global Optimization Solver is BARON, Branch and Reduce 
Optimization Navigator, developed by Professor Nikolaos V. Sahinidis and 
colleagues at the University of Illinois is a GAMS solver.

Global optimization solvers are currently in the code-testing phase of 
development which occurred 20 years ago for NLP solvers.
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